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SUMMARY

This work is part of an effort to characterize mechanical properties and
moisture transport in Kevlar fiber reinforced pressure vessels.

The specific purpose of this report is to describe the moisture sorption
behavior of the Kevlar 49 aramid fiber. The moisture sorption isotherms and
the diffusion coefficient was determined as a function of the moisture con-
centration. These data are necessary for predicting moisture equilibrium
concentrations in the composites for a given environment, and for estimatingits internal distribution as a function of time. They are also necessary for

estimating the lower limit of moisture permeation through the composite. (The
upper limit of the moisture permeation is governed by microporosity, which is
also being investigated but not covered in this report.)

This work was carried out with funding from SSPO under Task No. 74402/
B1509001 during FY 1978.
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INTRODUCTION

Because of the unusually high strength and stiffness to weight ratios

Kevlar 49 and Kevlar 29 aramid fibers have received great interest for
military and commercial structural and other applications, such as reinforce-
ment for pressure vessels, tires, armament plates, load carrying members,
aircraft panels, and general composite structures.

Moisture is known to affect organic matrix composite especially at

elevated temperatures. The reason for this is that moisture usually plasti-
cizes the matrix or it may in some cases also affect the interface betwoen
resin and fiber and reduce the interfacial bondstrength.

We have, using micromechanical concepts, quantitatively predicted1 ,2,

and experimentally verified3 the changes in the elastic constants of composites
from its constituent material properties. One of the important parameters
necessary for prediction of composite property changes with time in some

specified climatic or storage environment was the moisture diffusion co-
efficient of the matrix and its dependence on concentration and temperatuire.
Since Kevlar is itself an organic compound capable of sorbing moisture its
moisture sorption equilibrium and its diffusion coefficient have to be taken
into account for these calculations.

Thus, knowledge of moisture sorption in Kevlar may be important for
several reasons:

a. It will contribute to moisture transport through the composite.

b. The difference in hygroscopic expansion coefficient between

resin and fiber may have a similar or even greater effect than

1. Augl, J.M., and Berger, A.E., "The Effect of Moisture on Carbon Fiber

Reinforced Composites. III Prediction of Moisture Sorption in a Real
Outdoor Environment," NSWC/WOL TR 77-13, 1977.

2. Augl, J.M., and Berger, A.E., "The Effect of Moisture on Carbon Fiber
Reinforced Composites. IV Prediction of Changes in the Elastic Behavior,"
NSWC/WOL TR 77-61, 1977.

3. Augl, J.M., "Predictions and Verification of Moisture Effects on Carbon
Fiber-Epoxy Composites," NSWC TR 79-43 (in print).
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the thermal expansion coefficient in other reinforced com-

posites, which causes stress concentrations.

c. A difference in sorption equilibrium and diffusion rate at
rapid temperature changes may lead to an excess of moisture
at the interface and give rise to fiber resin debonding.

d. The weight and the dielectric properties will change with

sorbed moisture.

Because '-,f the interest the Navy has in this unique material we thought it
important that the moisture sorption and diffusion behavior be determined.

6
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EXPERIMENTAL

The moisture sorption equilibria ind diffusion coefficients at different
concentrations were determined with ar electronic Cahn-microbalance which is
schematically shown in Figure 1.

A small roll of fibers (about 120 mg) was dried at 10 0C in vacuum then it
was rapidly transferred into the weighing chamber whereupon a vacuum was applied
and the sample chamber temperature was increased to 80°C and held at this tempera-
ture till no further weight change occurred. Then the temperature was lowered to
the desired measurement temperature and valve No. 2 was closed. The insulation
box temperature was kept about 30C higher than the sample chamber temperature
(which was thermostated with a constant temperature circulation bath). The rela-
tive vapor pressure was adjusted to the desired level by means of valve V4 and
was measured with a capacitance manometer. Valve V3 was held open to the 5
buffer reservoir. The weight change w,s continuously recorded to + 0.002 mg.
The temperature in the measurement -hamoer was held constant to + 6.59C.

The sorption and desorption were continued until no further weight change
was observable.

7
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DISCUSSION AND RESULTS

Difference in Sorption Behavior

The first sorption experiments on a sample of Kevlar 49 (Lot 16, Ball
172-1 6G45, purchased in 1974) showed an unusual sorption behavior;

1. It absorbed an exceptionally large amount of moisture at high
relative humidities (see Figure 2, broken line) and

2. It showed an unusual sorption vs. time 1/2 curve, although the
strand strength was within the specifications of the manufacturer.

It was this alarmingly large moisture uptake and the concern of this
effect for composite properties that prompted this investigation. For com-
parison purposes, we obtained (in 1977) a sample of another lot which was
quite different from Lot 16 in its sorption behavior. Subsequently, we
requested a sample from Hercules (Bacchus) which behaved identically to the
newer DuPont sample, then we received various "old lots" from Lockheed (Palo
Alto) that differed somewhat among eachother, but in no way resembled the
Lot 16. The absorption curves of these materials at 60% relative humidity
and 50*C are shown in Figure 2. We therefore concluded that the material
of Lot 16 Ball 172-1 6G45 is probably an unusual exception and the bulk of
the measurements reported here were carried out on the sample received from

Mr. Jim Culver (Navy representative at Hercules).

Concentration Dependent Moisture Diffusion Coefficient of Kevlar 49

The sorption equilibrium curve of Kevlar 49 as a function of relative
humidity is shown in Figure 3 (solid line).

There is a difference in the absorption and desorption times to reach
equilibrium. A typical plot is shown on Figure 4, where A stands for absorp-
tion and D for desorption. (It is to be understood that the absorption curve
starts from 0% moisture concentration and levels out at the equilibrium con-
centration while the desorption starts out at the respective equilibrium
concentration and levels out at zero concentration.)

If there were a concentration independent moisture diffusion both

curves would be symmetrical (or the way they are plotted in Figure 4 they

9
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would be identical). Thus, it is obvious that the moisture diffusion coef-
ficient in Kevlar 49 is concentration dependent.

4

In order to determine the diffusion coefficient of a diffusant in a
fiber one has to solve Fick's diffusion equation for a cylinder of infinite
length:

_ C (rD aC
3t r Dr ar)

where C = concentration, t - time, r - radial coordinate and D = diffusion
coefficient.

The solution for a cylinder exposed to constant diffusant concentration
on the surface, where the diffusion coefficient is constant is given in
Equation (1):5

S4 exp (-Da t)

n-1 2 2 n
a an (1)

n

where Mt is the amount of diffusant taken up after time t, M, is the equi-
librium concentration reached after infinite time, D is the diffusion coeffi-
cient, an are the roots of the zero order Bessel function Jo(aan), and a is
the radius of the cylinder (fiber). Since the radius of the Kevlar 49 fiber is
0.0005969 cm a2 is (2.4048/.0005969)2 - 1.6231 E7, a2 - 8.5524E7,a2 = 2.1018E8, etc.

1 2 '3

For small times, one can use Equation (2) for calculating the diffusion
coefficient

Mt 4 Dt Dt 3/2-I (2t) a2 _- ( ) + .. .(2)

7T a 2 a 3 Tt a

for long times Equation (3) is more accurate, which uses the first few terms
of Equation (1),

Mt = 1 - .692 (exp -5.782 Dt + .190 exp (30.5 Dt

T a2  a2

(3)

+ .775 exp ( -74 Dt

a

4. Crank, J. "The Mathematics of Diffusion," Clarendon Press, Oxford, 1975,

p. 179.

5. Crank, J., ibid, p. 73.

13



NSWC TR 79-51

(Equation (3) is also called Hill's equation).

For long time sorption experiments, one can effectively replace the summa-

tion of Equation (1) by the first term of the series and one obtains:

ln(l- --M = ln 4 D2t (4)
M 2 2  L0 a a1

after differentiation of (4) one obtains (5)

d[in(M - Mt) ]/dt =aD = -5.783D (5)

From Equation (5) one can see that a plot of In(M - Mt) vs. time should give
a straight line after a sufficiently long time with a slope of -5.783 from which
the diffusion coefficient can be determined.

For materials with a very small diffusion coefficient it may be impractical
to wait till equilibrium has been reazhed. In that case, one can use again the
first term of Equation (1) for two different "long" times and one obtains
Equation (6);

(M -M 4 Mex(-Da 2 t M exp(-Dat2)j
2 1 2 1 1 (6)

a 2 L I 6
1

where MI and M2 are the amounts absorbed or desorbed after the "long" times
t i and t2.

All these equations apply only for a concentration independent diffusion
coefficient.

The solution of the diffusion equation where D is concentration dependent
is not straightforward and depends on the form of D(C). Various methods for
solving practical problems have been described in the literature.6 -1 1 All
these authors determined the concentration dependent D on film samples.
Frensdorff9 has shown (by solving the diffusion equation for a sheet by

6. Crank, J., and Park, G.S., Trans. Faraday Soc., 45, 240, 1949.
7. Long, F.A., and Thompson, L.J., J. Polym. Sci., 15, 413, 1955.
8. Kishimoto, A., and Enda, Y., J. Polym. Sci. A, 1, 1799, 1963.
9. Frensdorff, H.K., J. Polym. Sci. A, 2, 341, 1964.

10. Duda, J.L., and Vrentas, J.S., AICHE Journal, Mar 1971, p. 464.
11. Barrer, J.A., and Machin, D., Trans. Faraday Soc., 67, 244, 1971.

14
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a finite difference method) that for the long time experiments, where ln(M - Mt)
is plotted vs. time, all curves finally become straight lines. He showed the
graphs where D(C)/D(O) vary between I and 20. Thus the full curves of a sorption
and desorpt ion experiment at a constant surface concentration give two important
data, namely D(C), the differential diffusion coefficient at the equilibrium
concentration, and D(O), the diffusion coefficient when the diffusant approaches
zero. Since the concentration gradients for a given Mt/M in a cylinder
and a sheet for a given distance from the center to the outside differ only by
a factor of about 2 the analysis of Frensdorff (for sheet geometry) can also
be safely applied to cylindrical geometry as long as D(C)/D(O) is not too large.
Thus Equation (5) can be used to determine D(C) and D(O) from the correspond-
ing absorption and desorption curves. Equation (6) was tested for its range of
usefulness by assuming a concentration independent D and it was found that the
error was less than two percent for Mt/M. < 0.35; at Mt/M, = 0.5 this formula
differs by about 7 percent from the theoretical value. Figures 4-9 show typical
moisture absorption and desorption curves. Figures 4 and 7 are graphs of per-
cent moisture vs. square root of time, Figures 5 and 8 show graphs of the
fractional moisture equilibrium concentration remaining vs. time, and Figures 6
and 9 show graphs of Mt/M vs. [D(O)t/a2]I/2 where a = the radius of
the fiber and the other terms are as defined earlier. The data in the last two
graphs are presented in dimensionless coordinates, i.e., all materials which
have a concentration indepcndent diffusion coefficient should follow the
curve indicated "theoretical." The experimental curves however deviate
considerably (using D(O) = 1.54E-12 cm /sec), again an indication of a con-
centration dependent diffusion coefficient.

From these data the following diffusion coefticients were determined: D(C),
D(O), and -i, where D(C) stands for the differential diffusion coefficient at
concentration C, D(O) stands for the diffusion coefficient when the con-
centration approaches zero and Di stands for the integral or "average"
diffusion coefficient determined from the initial portion of the sorption or
desorption curves according to Equation (2). The superscripts A and D indicate
that the data have been obtained from either the absorption or desorption
curves respectively. The subscript S (in Table 1) indicates that the data were
obtained from the straight portion of the curves using Equation (5) while those
without subscripts were obtained from Equation (6). D(C)/D(O) is also called
the relative diffusion coefficient.

Table 1 presents data from the "long-term" solutions of Equations (5) and
(6) and Table 2 presents data derived from the "short-term" solution according
to Equation 2.

Thus the concentration dependence of the Kevlar 49 diffusion coefficient
(at 500C) is given in Figure 10. Here the concentration is given in terms
of the equilibrium vapor pressure (P/Po). (P/Po is also equal to the chemical
activity al of th- diffusant or if multiplied by 100 it is equal to the relative
humidity. To convert this to concentration in terms of g/lOOg of polymer one
uses Figure 3 which relates the equilibrium concentration to the relative vapor
pressure.)

15
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FIGURE 6 THEORETICAL AND EXPERIMENTAL SORPTION AND DESORPTION CURVES FOR KEVLAR 49

(D = 1.54 cm2/SEC) AT 500 C AND 15% RH
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Table 2. Average Diffusion Coefficients of Kevlar 49

Determined From The Initial Sorption And Desorption Data

Temp RH -A D
OC % M t/M D ,D D

50 10 .2 1.27E-11 6.29E-12 9.46E-12

50 10 .3 9.87E-12 4.73E-12 5.17E-12
50 10 .4 8.97E-12 4.84E-12 6.90E-12
50 10 .5 8.86E-12 4.87E-12 6.87E-12
50 15 .2 l.19E-ll 5.28E-12 8.59E-12

50 15 .3 1.02E-11 5.54E-12 7.87E-12
50 15 .4 9.95E-12 5.61E-12 7.78E-12
50 15 .5 9.87E-12 5.49E-12 7.68E-12
50 30 .2 1.22E-11 7.25E-12 9.72E-12

50 30 .3 1.20E-11 7.50E-12 9.75E-12
50 30 .4 1.20F-11 7.87E-12 9.94E-12
50 30 .5 1.24E-11 7.74E-12 1.01E-11
50 60 2 1.214E-11 9.39E-12 1.09E-11

50 60 3 1.20E-11 9.66E-12 1.08E-11
50 60 .4 1.25E-11 1.O1E-11 1.13E-11

50 60 .5 1.30E-11 1.04F-11 1.17E-11
50 80 .2 8.44E-12 1.19E-11 1.02E-11

50 80 .3 9.30E-12 1.06E-11 9.95E-12
50 80 .4 1.04E-11 I.04E-11 1.04E-11
50 80 .5 1.13E-11 1.03E-11 1.08E-11
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The diffusion coefficient D(O) of Kevlar 49, when the concentration
approaches zero is 1.54 E-12 cm2/sec with a standard deviation of .292 and a
coefficient of variation of 19%. This value was obtained from averaging the
data of column 8 of Table 1.

Figure 11 shows the concentration dependence of the relative diffusion
coefficient D(C)/D(O).

D Since D(C)/D(O) is not more than 12 (see Table 1) the values of DS(C) and
D S(O) are considered to be quite reliable and therefore cerve as data for
comparison for the other data. The data of DA(C) of column 5 of Table 1
obtained from formula (6) agree quite well with those of D~A(C) at least
for times when Mt/M. is more than 0.9. On the other hand, the data for DD(O)
from the desorption curves (using the same formula) are too high to be of practi-
cal value. It should be noted that the moisture diffusion coefficient for
Kevlar is considerably lower than for most other polymers.

It is not surprising that the integral diffusion coefficients obtained
from the initial portion of the sorption curves using formula (2) are of
qualitative value only and should not be used without further analysis
analagous to Kishimoto 8 who expanded the diffusion coefficient in a power series
of the form;

D(C) = DO + k1 C + k2 C2 + k3 C3 +...

and solving an integral

-1.85 008Dd (C) 1.85(Co0) * 0o(C 0"5D(C)dC

to determine the coefficients ki. His analysis, however, is given only for
a plate with infinite extension.

From Figure 11 it becomes apparent that the relative diffusion coefficient
D(C)/D(O) goes through a maximum, which could have been guessed also from the
intersection of the absorption and desorption curves observed at high relative
humidities as shown in Figure 7.

The reason why the diffusion coefficient goes through a maximum with
increasing concentration might be explained from the fact that water can form
hydrogen bridges and thus can coagulate (i.e., form clusters) inside the
polymer matrix. Such a cluster formation is favored with increasing con-
centration of water, thus reducing the mobility of the diffusant.

24
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Based on the statistical thermodynamics of multicomponent systems of
McMillan and Mayer 12 and others, 13 ,14 Zimm and Lundbergl,16 have derived
expressions for determining the degree of clustering in two-component mixtures
of polymer and solvent which have the form of Equations (7) and (8):

(D 1 G 1 / (j a1n~ \-S1 1= C11
V 1  1 \1na 1~ p,T(7

G - 2 (8 )

V1  a I  ) p,T

where G11 is called the cluster integral, aI is the chemical activity of the
solvent, Dl is its volume fraction, V1 its partial molar volume and C1 its
concentration.

A tendency for solvent molecules to cluster is revealed by values of Gll/V I

greater than -1. CIG11 is the mean number of solvent molecules (in this case
water) in excess of the mean concentration. Thus the mean size of the cluster is
C101 1+1.

We can use the sorption equilibrium curve of Figure 3 (solid curve) and,

from the fiber density p = 1.45, derive the curve a1 vs, l which is shown in
Figure 12. Figure 13 is a plot of al/ 1 vs. al. By graphical or numerical
differentiation one obtains the values of GI1 /V I and 41 GlI/V1 

= CIGlI, which

are presented in Table 3 and graphically in Figure 14. Also presented on the

same graph are the cluster functions of stretched and unstretched Nylon 66.
(The sorption data for Nylon were taken from the literature.)

1 7

From these consideratons it is evident that the size of the cluster increases
rapidly above an equilibrium concentration corresponding to 60 percent relative
humidity. This is about where the diffusion coefficient goes through a maximum.

Effect of Abrasion on the Sorption Behavior

It was suggested that the difference in the 8orption curves of Lot 16
and the other Kevlar 49 samples might be due to "kink-bands" that are caused
by rough handling of the fibers, specifically when they are forced to bend over

12. McMillan, W.G., Jr., and Mayer, J.E., J. Chem. Phys., 13, 276, 1945.
13. Kirkwood, J.G., and Buff, F.P., J. Chem. Phys., 19, 774, 1951.
14. Flory, P.J., and Kriegbaum, W.J., J. Chem Phys., 18, 1086, 1950.
15. Zimm, B.H., j. Chem. Phys., 21, 934, 1953.
16. Zimm, B.H., and Lundberg, J.L., J. Phys. Chem., 60, 425, 1956.
17. Bull, H.B., J. Amer. Chem. Soc., 66, 1499, 1949.
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Table 3. Zimmts Cluster Functions of Kevlar 49
as Functions of Moisture Concentration

1 Weight 1 / D2 A(al/l GI GI1
% H2 0 2Aa v V

.05 .45 .00648 7.71 .9935 29.37 -30.18 -.196

.1 .76 .0109 9.17 .9891 28.05 -28.74 -.313

.2 1.18 .0168 11.89 .9832 23.54 -24.14 -.406

.3 1.52 .0216 13.91 .9784 15.69 -16.34 -.353

.4 1.89 .0267 14.99 .9733 6.97 - 7.78 -.208

.5 2.33 .0327 15.30 .9673 1.67 - 2.62 -.086

.6 2.80 .0390 15.37 .9610 0.00 - 1.00 -.039

.7 3.30 .0457 15.33 .9543 -2.02 0.928 .042

.8 3.92 .0538 14.87 .9462 -8.60 7.14 .384

.9 4.90 .0663 13.57 .9337 -18.53 16.30 1.081
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a small radius. In order to simulate such a condition we have self abraided the
fiber by pulling a 1 kg weight (per strand) up and down as indicated in Figure
15, (one cycle is considered one up and down movement). The sorption curves
before, after one half and after 7 cycles was measured (see Figure 16). There
is undoubtedly a difference in the rate of initial moisture uptake, however,
there is no difference in the final sorption equilibrium concentration.

We therefore prefer another explanation that has been suggested: there
may be still traces of hygroscopic substances from the spinning process present
leading to strong solvation. However, since the spinning process is proprie-
tary this suggestion, though plausible, is only speculation.

Effect of the Finish on the Sorption Behavior

Figure 17 shows the sorption behavior of Kevlar 49 with and without a
"standard" DuPont finish. Although it appears that there is a higher degree
of moisture sorption on fibers with finish than on fibers without, a compari-
son with Figure 2 shows however that this difference might fall within the
spread of different batches (in Figure 2) that are without finish. Thus, the
difference does not appear to be significant.

Test for Fiber Porosity

A yarn bundle of Kevlar 49 was subjected to a mercury intrusion porosity

measurement up to pressures of 7000 psi. Figure 18 shows the curve of cm3 of

mercury per gram of fiber vs. absolute pressure, and Figure 19 shows the pore
size and distribution curve. The initial mercury uptake is not due to pores
in the fiber (since the pore diameters are in the order of the fiber diameters)
but due to voids between the packed fibers. No voids are further observed with
less than 0.003 microns.
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l.k

FIGURE 15 SELF ABRASION OF A ONE-END KEVLAR 49 STRAND
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CONCLUSIONS

1. The moisture sorption equilibrium concentration of Kevlar 49 as a
function of relative humidity, and the diffusion coefficient as a function of
concentration (at 50* and 280C) has been measured.

2. The diffusion coefficient is considerably lower than for most other
polymers. Thus, in composites, the effective diffusion coefficient is governed
by the resin diffusion coefficient and therefore the fibers behave as if they
do not contribute to moisture transport, although the total moisture uptake has
to be taken into account.

3. One of the measured yarns was quite different from the other samples
measured in both the amount of moisture taken up, and in the type of weight
gain vs. time 1 2 curve.

4. Abrasion of the fiber affects the rate of moisture uptake but not
the final equilibrium concentration.

5. There is no significant difference in the sorption behavior of yarns
with and without sizing.

6. The observed maximum in the diffusion coefficient curve may be
explained by the formation of water clusters at high relative humidity.

7. The fiber has no measurable porosity.
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